Chapter 2 Study Questions

1. Express the following numbers or answers in scientific notation:
a) $650(2 \mathrm{sig} \mathrm{fig})$
b) 0.0005 (1 sig fig)
c) 207,000 (3 sig fig)
d) $\left(5.0 \times 10^{3}\right) \times\left(2.0 \times 10^{2}\right)$
e) $\left(3.0 \times 10^{2}\right) \div\left(6.0 \times 10^{-3}\right)$
2. For each of the following, indicate the metric unit and a device used to measure it.
a) volume
b) mass
c) length
3. Indicate the number of significant figures in the following numbers:
a) 2,348
b) 7.0001
c) 0.0023
d) 24,500
e) 0.1060
4. Perform the following operations and express the answers in significant figures:
a) $1.24 \times 8.2=$
b) $6.78-3.3=$
c) $9.999+0.22=$
d) $\left(5.67 \times 10^{3}\right) \times\left(2.1 \times 10^{-2}\right)$
5. Bozo determined the density of a sample of aluminum. For his sample, he found the volume was $0.350 \mathrm{~cm}^{3}$ and the mass was 0.822 g . Calculate the density of aluminum from Bozo's data.
6. Calculate the mass in milligrams of a person with a mass of 50.0 kg .
7. Find the mass in pounds (lbs) of a 275 -gram sample of sugar.
8. Find the number of cm in 0.286 miles. $(1 \mathrm{~km}=0.621 \mathrm{mi})$
9. Find the volume in microliters of 11.8 kg of iron. The density of iron is $7.87 \mathrm{~g} / \mathrm{cm}^{3}$.
10. Tungsten is a very dense metal, with a density of $19.3 \mathrm{~g} / \mathrm{cm}^{3}$. Convert the density of tungsten to pounds/quart. $(1 \mathrm{~L}=1.06 \mathrm{qt})$
11. (OPTIONAL) Assuming each ant is 5.0 mm long, how many ants would it take to make a line, single file, from one end to the other of a 100-yard football field? (2 sig fig)

Summary of Chapter 2: Measurements and Problem Solving

Scientific notation
Significant figures: recording, counting \& in calculations
SI Units: meter, kilogram, second, Kelvin
Metric prefixes: kilo, centi, milli and micro
Density
English-Metric: $1 \mathrm{lb}=454 \mathrm{~g}, 1 \mathrm{in}=2.54 \mathrm{~cm}, 1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$
Dimensional Analysis

Answers to Chapter 2 Study Questions

1. a) 6.5×10^{2}
b) 5×10^{-4}
c) 2.07×10^{5}
d) 1.0×10^{6}
e) 5.0×10^{4}
2. a) liters (L) or cm^{3}, graduated cylinder, buret, or volumetric flask
b) grams (g), balance
c) meters (m), ruler or meterstick
3. a) 4
b) 5
c) 2
d) 3 or 5
e) 4
4. a) $1.24 \times 8.2=10$.
b) $6.78-3.3=3.5$
c) $9.999+0.22=10.22$
d) $\left(5.67 \times 10^{3}\right) \times\left(2.1 \times 10^{-2}\right)=1.2 \times 10^{2}$
5. density $=\frac{\text { mass }}{\text { volume }}=\frac{0.822 \mathrm{~g}}{0.350 \mathrm{~cm}^{3}}=2.35 \mathrm{~g} / \mathrm{cm}^{3}$
6. $50.0 \mathrm{~kg} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}} \quad \times \frac{1000 \mathrm{mg}}{1 \mathrm{~g}}=5.00 \times 10^{7} \mathrm{mg}$
7. 275 grams $x \frac{1 \mathrm{lb}}{454 g}=0.606 \mathrm{lb}$
8. 0.286 mi $x \frac{1 \mathrm{~km}}{0.621 \mathrm{mi}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=4.60 \times 10^{4} \mathrm{~cm}$ (or convert $\mathrm{mi} \rightarrow \mathrm{ft} \rightarrow \mathrm{in} \rightarrow \mathrm{cm}$)
9. $11.8 \mathrm{~kg} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}} \quad x \frac{1 \mathrm{~cm}^{3}}{7.87 \mathrm{~g}} \quad \times \frac{1 m L}{1 \mathrm{~cm}^{3}} \quad x \frac{1000 \mu \mathrm{~L}}{1 m L}=1.50 \times 10^{6} \mu \mathrm{~L}$
10. $\frac{19.3 g}{c m^{3}} \times \frac{1 \mathrm{lb}}{454 g} \times \frac{1 \mathrm{~cm}^{3}}{1 m L} \times \frac{1000 \mathrm{~mL}}{1 L} \times \frac{1 L}{1.06 q t}=40.1 \mathrm{lb} / \mathrm{qt}$
11. 100 yd $x \frac{36 \mathrm{in}}{1 \mathrm{yd}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \times \frac{1000 \mathrm{~mm}}{1 \mathrm{~m}} \times \frac{1 \mathrm{ant}}{5.0 \mathrm{~mm}}=1.8 \times 10^{4} \mathrm{ants}$
